MENU2010: 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon May 31-June 4, 2010, College of William and Mary, Williamsburg, Virginia

E906/SeaQuest at FNAL:

Measurement of Flavor Asymmetry of Antiquarks in the Nucleons

Wen-Chen Chang 章文箴 Institute of Physics, Academia Sinica, Taiwan on behalf of E906/SeaQuest Collaboration

- Introduction
- •Explore sea quark content via Drell-Yan process.
- •Observation of flavor asymmetry of sea quark.
- Interpretation of origin.
- •E906/SeaQuest experiment at FNAL.
- Status and prospect.

Unpolarized Parton Distributions (CTEQ6)

Is $\overline{u} = \overline{d}$ in the proton?

 $F_2^p(x,Q^2) - F_2^n(x,Q^2) = \frac{1}{3}x[u_v(x,Q^2) - d_v(x,Q^2)] + \frac{2}{3}x[\bar{u}(x,Q^2) - \bar{d}(x,Q^2)]$

Gottfried Sum Rule

$$S_{G} = \int_{0}^{1} [(F_{2}^{p}(x) - F_{2}^{n}(x))/x] dx$$

= $\frac{1}{3} + \frac{2}{3} \int_{0}^{1} (\overline{u}_{p}(x) - \overline{d}_{p}(x)) dx$
= $\frac{1}{3} \quad (if \ \overline{u}_{p} = \overline{d}_{p})$

Experimental Measurement of Gottfried Sum

New Muon Collaboration (NMC), Phys. Rev. D50 (1994) R1

 $S_G = 0.235 \pm 0.026$

(Significantly lower than 1/3!)

Explanations for the NMC result

- Uncertain extrapolation for 0.0 < x < 0.004
- Charge symmetry violation $(\overline{u}_n \neq \overline{d}_p, \overline{d}_n \neq \overline{u}_p)$
- $\overline{u}(x) \neq \overline{d}(x)$ in the proton

Need independent methods to check the $\overline{d} - \overline{u}$ asymmetry, and to measure its **x-dependence** !

Light Antiquark Flavor Asymmetry: Brief History

Naïve Assumption: 2.25 ▲ NA51 $d(x) = \bar{u}(x)$ 2 MRSr2 NMC (Gottfried Sum Rule) CTEQ4m 1.75 $\left[\bar{d}(x) - \bar{u}(x)\right] dx \neq 0$ 1.5 NA51 (Drell-Yan, 1994) 1.25 '₹ '₽ $d > \bar{u}$ at x = 0.181 NA 51 Drell-Yan 0.75

0.5

0.25

0

0.6

0.5

confirms

 $\overline{d}(x) > \overline{u}(x)$

0.4

0.3

Х

0.2

0.1

Fermilab E866 Measurements

800 GeV $\sigma(p+d \rightarrow \mu^+ \mu^- X) / \sigma(p+p \rightarrow \mu^+ \mu^- X)$

Light Antiquark Flavor Asymmetry: Brief History

Naïve Assumption: 2.25 **E**866 $d(x) = \bar{u}(x)$ 2 ▲ NA51 NMC (Gottfried Sum Rule) MRSr2 1.75 $\int_0^1 \left[\bar{d}(x) - \bar{u}(x) \right] dx \neq 0$ CTEQ4m CTEQ6 1.5 NA51 (Drell-Yan, 1994) 1.25 '2 'P $d > \bar{u}$ at x = 0.181 E866/NuSea (Drell-Yan, 1998) $\bar{d}(x)/\bar{u}(x)$ for $0.015 \le x \le 0.35$ 0.75 0.5 0.25 E866 Systematic Error

0

0.2

0.1

0.3

Х

0.4

0.6

0.5

Extraction of
$$\overline{d} - \overline{u}$$

 $\overline{d} - \overline{u} = \overline{u}(\frac{\overline{d}}{\overline{u}} - 1)$
 $\overline{d} = 1)$

HERMES: Semi-Inclusive DIS $E866: \langle Q^2 \rangle = 54 \, GeV^2; HERMES: \langle Q^2 \rangle = 2.3 \, GeV^2$ ¹⁰

Origin of $\overline{u}(x)\neq \overline{d}(x)$: Valence quark effect?

- Pauli blocking
 - $g \rightarrow u\bar{u}$ is more suppressed than $g \rightarrow d\bar{d}$ in the proton since p=uud (Field and Feynman 1977)
 - pQCD calculation (Ross Sachrajda)
 - Bag model calculation (Signal, Thomas, Schreiber)
- Chiral quark-soliton model (Diakonov, Pobylitsa, Polyakov)
- Instanton model (Dorokhov, Kochelev)
- Statistical model (Bourrely, Buccella, Soffer; Bhalerao)
- **Balance model** (Zhang, Ma)

The valence quarks affect the Dirac vacuum and the quark-antiquark sea.

Origin of $\overline{u}(x)\neq \overline{d}(x)$: Non-perturbative effect?

• Meson cloud in the nucleons (Thomas, Kumano): Sullivan process in DIS.

• Chiral quark model (Eichten, Hinchliffe, Quigg; Wakamatsu): Goldstone bosons couple to valence quarks.

The pion cloud is a source of anti-quarks in the protons and it lead to $\overline{d}>\overline{u}$.

Proton Structure: Remove perturbative sea

 There is a gluon splitting component which is symmetric

 $\bar{d}(x) = \bar{u}(x) = \bar{q}(x)$

- $\bar{d} \bar{u}$
 - Symmetric sea via pair production from gluons subtracts off
 - No Gluon contribution at 1st order in α_s $rac{1}{2}$
 - Nonperturbative models are motivated by the observed difference
- A proton with 3 valence quarks plus glue cannot be right at any scale!!

Advantages of 120 GeV Main Injector

- Cross section scales as 1/s
 - 7x that of 800 GeV beam
- Backgrounds, primarily from J/ψ decays scale as s
 - 7x Luminosity for same detector rate as 800 GeV beam

50x statistics!!

E-906/SeaQuest Collaboration

Abilene Christian University

Obiageli Akinbule Brandon Bowen Mandi Crowder Tyler Hague Donald Isenhower Ben Miller Rusty Towell Marissa Walker Shon Watson Ryan Wright

Academia Sinica

Wen-Chen Chang Yen-Chu Chen Shiu Shiuan-Hal Da-Shung Su

Argonne National Laboratory

John Arrington <u>Don Geesaman*</u> Kawtar Hafidi Roy Holt Harold Jackson David Potterveld <u>Paul E. Reimer*</u> Josh Rubin

University of Colorado

Joshua Braverman Ed Kinney Po-Ju Lin Colin West

Fermi National Accelerator Laboratory

Chuck Brown David Christian **University of Illinois** Bryan Dannowitz Dan Jumper Bryan Kerns Naomi C.R Makins Jen-Chieh Peng

KEK

Shin'ya Sawada **Kyoto University** Kenlchi Imai **Tomo Nagae Ling-Tung University Ting-Hua Chang** Los Alamos National Laboratory Gerry Garvey Mike Leitch Han Liu Ming Xiong Liu Pat McGaughey University of Maryland Prabin Adhikari **Betsy Beise** Kaz Nakahara **University of Michigan** Brian Ball Wolfgang Lorenzon **Richard Raymond**

National Kaohsiung Normal University

Rurngsheng Guo Su-Yin Wang

RIKEN

Yuji Goto Atsushi Taketani Yoshinori Fukao Manabu Togawa

Rutgers University

Lamiaa El Fassi Ron Gilman Ron Ransome Elaine Schulte Brian Tice Ryan Thorpe Yawei Zhang

Texas A & M University

Carl Gagliardi Robert Tribble

Thomas Jefferson National Accelerator Facility

Dave Gaskell Patricia Solvignon

Tokyo Institute of Technology

Toshi-Aki Shibata Ken-ichi Nakano **Yamagata University** Yoshiyuki Miyachi

*Co-Spokespersons

Extracting d-bar/-ubar From Drell-Yan Scattering

Partonic Energy Loss

- An understanding of partonic energy loss in both cold and hot nuclear matter is paramount to elucidating RHIC data.
- Pre-interaction parton moves through cold nuclear matter and looses energy.
- Apparent (reconstructed) kinematic values (x₁ or x_F) is shifted
- Fit shift in x₁ relative to deuterium

Parton Loses Energy in Nuclear Medium

Models: - Galvin and Milana $\Delta x_1 = -\kappa_1 x_1 A^{\frac{1}{3}}$

- Brodsky and Hoyer
$$\Delta x_1 = -\frac{\kappa_2}{s}A^{\frac{1}{3}}$$

$$\Delta x_1 = -\frac{\kappa_3}{s} A^{\frac{2}{3}}$$

Parton Energy Loss

- Energy loss / 1/s
 - larger at 120 GeV
- Ability to distinguish between models
- Measurements rather than upper limits
- E906 will have sufficient statistical precision to allow events within the shadowing region, x₂ < 0.1, to be removed from the data sample

EMC effect of antiquark distribution?

- The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual "Nuclear" mesons.
- No antiquark enhancement seen in Drell-Yan (Fermilab E772) data.
- Contemporary models predict large effects to antiquark distributions as x increases.
- Models must explain both DIS-EMC effect and Drell-Yan

Drell-Yan Decay Angular Distributions

 Θ and Φ are the decay polar and azimuthal angles of the μ^+ in the dilepton rest-frame

Collins-Soper frame

A general expression for Drell-Yan decay angular distributions: $\left(\frac{1}{\sigma}\right) \left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right] \left[1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi\right]$ Lam-Tung relation: $1 - \lambda = 2\nu$ Phys. Rev. D 18, 2447–2461

- Reflect the spin-1/2 nature of quarks
 (analog of the Callan-Gross relation in DIS)
- Insensitive to QCD corrections

Azimuthal cos2Φ Distribution in p+p and p+d Drell-Yan

E866 Collab., Lingyan Zhu et al., PRL 99 (2007) 082301; PRL 102 (2009) 182001

Sea-quark BM functions are much smaller than valence quarks

Timeline of E906

- 2002: E906 Approved by Fermilab PAC
- 2006: E906 funded by DOE Nuclear Physics
- 2008, Dec: Stage-II approval by Fermilab Director and MOU between Fermilab and E906 Collaboration finalized.
- Construction and installation of spectrometer and readout electronics to be done in 2009 and upper half of 2010.

NM4/KTeV Hall

Liquid H/D Target

Focusing Magnet

KTeV Magnet

Station 2 and 3- (Drift Chambers)

Station 3+ (Drift Chamber)

Station 4 (Proportional Tubes)

Qualitative HV scan and Signal Rates with Cosmic Rays (Ar/CO2)

Hodoscope (For online Dimuon Trigger)

Readout Electronics

Timeline of E906

- 2002: E906 Approved by Fermilab PAC
- 2006: E906 funded by DOE Nuclear Physics
- 2008, Dec: Stage-II approval by Fermilab Director and MOU between Fermilab and E906 Collaboration finalized.
- Spectrometer construction and installation in 2009 and upper half of 2010.
- Commission run will start in July, 2010 and physics run is expected in the fall of 2010!
- Scheduled to run in 2010, 2011 and 2013 for 2 years of data collection

Possible Future Programs

- Possible future programs: polarized target and pionic Drell-Yan.
- Apparatus available for future programs at, *e.g.* RHIC, J-PARC.

Experiment Schedule

http://www.fnal.gov/directorate/program_planning/schedule/index.html

2010-2011 Fermilab Accelerator Experiments Schedule

Calendar Year		201	0		2011				
Tevatron		CDF			OPEN				
Collide	er	DZero			OPEN				
	в	MiniBooNE			MiniBooNE #				
Neutrino		MINERvA		MINERvA					
Program	МІ	ArgoNeuT							
		MINOS			MINOS				
SY 120	ΜТ	Test Beam		Test Beam					
	мс	OPEN		OPEN					
	NM4	E-906/SeaQuest			E-906/SeaQuest				

This schedule will be updated regularly, as plans change.

Draft 2010-13 Fermilab Accelerator Experiments' Run Schedule

Typically Revised Annually - This Version from October, 2009

Calendar Year		2010		2011			2012		2013	
Tevatron Collider		CDF & DZero			CDF & DZero		N			OPEN
Neutrino Program	в	MiniBooNE		MiniBooNE					OPEN	
		OPEN		OPEN					MicroBooNE	
	мі	MINOS		MINOS						OPEN
		MINERvA			MINERvA					MINERVA
		ArgoNeuT								
							NOvA			NOvA
SY 120	мт	Test Beam		Test Beam						Test Beam
	MC	OPEN		OPEN						OPEN
	NM4	E-906/Dr <mark>ell-Y</mark> an		E-906/Drell-Yan						E-906/Drell-Yan

35